
8/2/2017 Runtime system - Wikipedia

https://en.wikipedia.org/wiki/Runtime_system 1/4

Runtime system
From Wikipedia, the free encyclopedia

A runtime system, also called run-time system, primarily implements portions of an execution model. This is in
contrast to the runtime lifecycle phase of a program, during which the runtime system is in operation. Most
languages have some form of runtime system, which implements control over the order in which work that was
specified in terms of the language gets performed. Over the years, the meaning of the term 'runtime system' has
been expanded to include nearly any behaviors that are dynamically determined during execution.

Contents

1 Overview
2 Examples
3 Advanced features
4 History
5 See also
6 References

Overview

Every programming language specifies an execution model, and many implement at least part of that model in a
runtime system. One, debatable, way to define a runtime system is that any behavior that is not directly the work of
a program is runtime system behavior. This definition includes as part of the runtime system things such as putting
parameters onto the stack before a function call, the behavior of disk I/O, and parallel execution related behaviors.

By this definition, essentially every language has a runtime system, including compiled languages, interpreted
languages, and embedded domain-specific languages. Even API invoked stand alone execution models such as
Pthreads have a runtime system that is the implementation of execution model's behavior.

Most scholarly papers on runtime systems focus on the implementation details of parallel runtime systems. A
notable example of a parallel runtime system is that of Cilk, a popular parallel programming model.[1] In addition,
the proto-runtime toolkit was created to simplify the creation of parallel runtime systems.[2]

In addition to the execution model behavior, a runtime system may also perform support services such as type
checking, debugging, or code generation and optimization.[3]

The runtime system is also the gateway by which a running program interacts with the runtime environment,
which contains not only state values that are accessible during program execution, but also active entities that can
be interacted with during program execution like disk drives and people, via keyboards. For example, environment
variables are features of many operating systems, and are part of the runtime environment; a running program can
access them via the runtime system. Likewise, hardware devices such as a DVD drive are active entities that a
program can interact with via a runtime system.

A unique application of a runtime environment (RTE) is within an operating system (OS) that only allows that RTE
to run, meaning from boot until power-down the entire OS is dedicated to only the application(s) running within
that RTE. Any other code that tries to run or any failures in the application(s) break the RTE which breaks the OS
which stops all processing and requires a re-boot. If the boot is from read-only memory, an extremely secure,

https://en.wikipedia.org/wiki/Execution_model
https://en.wikipedia.org/wiki/Run_time_(program_lifecycle_phase)
https://en.wikipedia.org/wiki/Input/output
https://en.wikipedia.org/wiki/Compiled_language
https://en.wikipedia.org/wiki/Interpreted_language
https://en.wikipedia.org/wiki/Embedded_domain-specific_language
https://en.wikipedia.org/wiki/Pthreads
https://en.wikipedia.org/wiki/Cilk
https://en.wikipedia.org/wiki/Type_checking
https://en.wikipedia.org/wiki/Debugging
https://en.wikipedia.org/wiki/Code_generation_(compiler)
https://en.wikipedia.org/wiki/Code_optimization
https://en.wikipedia.org/wiki/Environment_variable


8/2/2017 Runtime system - Wikipedia

https://en.wikipedia.org/wiki/Runtime_system 2/4

simple, single-mission system is created. For example, this an easy way to create a never-needs-patching, can-
never-be-modified Internet of Things device. In this case, the IOT could not be used for other purposes (e.g. a
botnet) but nor can it be patched to prevent exploiting vulnerabilities to force a reboot.

Examples

As a simple example of a basic runtime system, the runtime system of the C language is a particular set of
instructions inserted into the executable image by the compiler. Among other things, these instructions manage the
processor stack, create space for local variables, and copy function-call parameters onto the top of the stack. There
are often no clear criteria for deciding which language behavior is considered inside the runtime system versus
which behavior is "compiled". In this case, the reason that C's stack behavior is part of the runtime system, as
opposed to part of a keyword of the language, is that it is systematic, maintaining the state of the stack throughout
a program's execution. The systematic behavior implements the execution model of the language, as opposed to
implementing semantics of particular keywords which are directly translated into code that computes results.

Another example, which illuminates the nature of a runtime system, is the case of using an application
programming interface (API) to interact with a runtime system. The calls to that API look the same as calls to a
regular software library, however at some point during the call the execution model changes. The runtime system
implements an execution model different from that of the language the library is written in terms of. A person
reading the code of a normal library would be able to understand the library's behavior by just knowing the
language the library was written in. However, a person reading the code of the API that invokes a runtime system
would not be able to understand the behavior of the API call just by knowing the language the call was written in.
At some point, via some mechanism, the execution model stops being that of the language the call is written in and
switches over to being the execution model implemented by the runtime system. For example, the trap instruction
is one method of switching execution models. This difference is what distinguishes an API-invoked execution
model, such as POSIX threads, from a usual software library. Both POSIX threads calls and software library calls
are invoked via an API, but POSIX threads behavior cannot be understood in terms of the language of the call.
Rather, POSIX threads calls bring into play an outside execution model, which is implemented by the POSIX
threads runtime system (this runtime system is often the OS kernel).

Advanced features

Some compiled or interpreted languages provide an interface that allows application code to interact directly with
the runtime system. An example is the Thread class in the Java language, which allows code (that is animated by
one thread) to do things such as start and stop other threads. Normally, core aspects of a language's behavior such
as task scheduling and resource management are not accessible in this fashion.

Higher-level behaviors implemented by a runtime system may include tasks such as drawing text on the screen or
making an Internet connection. It is often the case that operating systems provide these kinds of behaviors as well,
and when available, the runtime system is implemented as an abstraction layer that translates the invocation of the
runtime system into an invocation of the operating system. This hides the complexity or variations in the services
offered by different operating systems. This also implies that the OS kernel can itself be viewed as a runtime
system, and that the set of OS calls that invoke OS behaviors may be viewed as interactions with a runtime system.

In the limit, the runtime system may provide services such as a P-code machine or virtual machine, that hide even
the processor's instruction set. This is the approach followed by many interpreted languages such as AWK, and
some languages like Java, which are meant to be compiled into some machine-independent intermediate
representation code (such as bytecode). This arrangement greatly simplifies the task of language implementation
and its adaptation to different machines, and improves efficiency of sophisticated language features such as

https://en.wikipedia.org/wiki/Internet_of_Things
https://en.wikipedia.org/wiki/Botnet
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Execution_model
https://en.wikipedia.org/wiki/Semantics_(computer_science)
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Software_library
https://en.wikipedia.org/wiki/Java_language
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Resource_(computer_science)
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Abstraction_layer
https://en.wikipedia.org/wiki/P-code_machine
https://en.wikipedia.org/wiki/Virtual_machine
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Interpreted_language
https://en.wikipedia.org/wiki/AWK
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Intermediate_representation
https://en.wikipedia.org/wiki/Bytecode


8/2/2017 Runtime system - Wikipedia

https://en.wikipedia.org/wiki/Runtime_system 3/4

reflection. It also allows the same program to be executed on any machine without an explicit recompiling step, a
feature that has become very important since the proliferation of the World Wide Web. To speed up execution,
some runtime systems feature just-in-time compilation to machine code.

At the other extreme, the physical CPU itself can be viewed as an implementation of the runtime system of a
specific assembly language. In this view, the execution model is implemented by the physical CPU and memory
systems. As an analogy, runtime systems for higher-level languages are themselves implemented using some other
languages. This creates a hierarchy of runtime systems, with the CPU itself – or actually its inner digital logic
structures that determine things like program counter advancement and scheduling of instructions – acting as the
lowest-level runtime system.

A modern aspect of runtime systems is parallel execution behaviors, such as the behaviors exhibited by mutex
constructs in Pthreads and parallel section constructs in OpenMP. A runtime system with such parallel execution
behaviors may be modularized according to the proto-runtime approach.

History

Notable early examples of runtime systems are the interpreters for BASIC and Lisp. These environments also
included a garbage collector. Forth is an early example of a language that was designed to be compiled into
intermediate representation code; its runtime system was a virtual machine that interpreted that code. Another
popular, if theoretical, example is Donald Knuth's MIX computer.

In C and later languages that supported dynamic memory allocation, the runtime system also included a library that
managed the program's memory pool.

In the object-oriented programming languages, the runtime system was often also responsible for dynamic type
checking and resolving method references.

See also

Run time (program lifecycle phase)
Execution model
Programming model

References
1. Blumofe, Robert D.; et al. (1995). "Cilk: An efficient multithreaded runtime system" (http://dl.acm.org/citati

on.cfm?id=209958). ACM.
2. Open Source Research Institute; et al. (2011). "The Proto-Runtime Toolkit" (http://opensourceresearchinstitu

te.org/pmwiki.php/PRT/HomePage).
3. Andrew W. Appel (May 1989). "A Runtime System" (https://users-cs.au.dk/hosc/local/LaSC-3-4-pp343-38

0.pdf) (PDF). Princeton University. Retrieved 2013-12-30.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Runtime_system&oldid=754712100"

This page was last edited on 14 December 2016, at 02:52.
Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply.
By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark
of the Wikimedia Foundation, Inc., a non-profit organization.

https://en.wikipedia.org/wiki/Reflection_(computing)
https://en.wikipedia.org/wiki/World_Wide_Web
https://en.wikipedia.org/wiki/Just-in-time_compilation
https://en.wikipedia.org/wiki/Pthreads
https://en.wikipedia.org/wiki/OpenMP
https://en.wikipedia.org/wiki/Modular
https://en.wikipedia.org/w/index.php?title=Proto-runtime&action=edit&redlink=1
https://en.wikipedia.org/wiki/BASIC
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)
https://en.wikipedia.org/wiki/Forth_(programming_language)
https://en.wikipedia.org/wiki/Donald_Knuth
https://en.wikipedia.org/wiki/MIX
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Object-oriented_programming_language
https://en.wikipedia.org/wiki/Run_time_(program_lifecycle_phase)
https://en.wikipedia.org/wiki/Execution_model
https://en.wikipedia.org/wiki/Programming_model
http://dl.acm.org/citation.cfm?id=209958
http://opensourceresearchinstitute.org/pmwiki.php/PRT/HomePage
https://users-cs.au.dk/hosc/local/LaSC-3-4-pp343-380.pdf
https://en.wikipedia.org/w/index.php?title=Runtime_system&oldid=754712100
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
https://wikimediafoundation.org/wiki/Terms_of_Use
https://wikimediafoundation.org/wiki/Privacy_policy
https://www.wikimediafoundation.org/


8/2/2017 Runtime system - Wikipedia

https://en.wikipedia.org/wiki/Runtime_system 4/4


